Building a Universal Nuclear Energy Density Functional

$$\hat{H}\Psi(\vec{x}) = E\Psi(\vec{x})$$

$$\Psi(\vec{x}) = \{\psi_n(\vec{x})\} \forall n$$

$$\hat{H} = \begin{pmatrix} \hat{h}(\vec{x}) & \hat{\Delta}(\vec{x}) \\ -\hat{\Delta}^{\dagger}(\vec{x}) & -\hat{h}^*(\vec{x}) \end{pmatrix} \qquad \hat{\Delta}(\vec{x}) = \begin{pmatrix} 0 & \Delta(\vec{x}) \\ -\Delta(\vec{x}) & 0 \end{pmatrix}$$

$$\psi_n(\vec{x}) = \begin{pmatrix} u_n(\vec{x}) \\ v_n(\vec{x}) \end{pmatrix} \quad u_n(\vec{x}) = \begin{pmatrix} u_{n,\uparrow}(\vec{x}) \\ u_{n,\downarrow}(\vec{x}) \end{pmatrix} \quad v_n(\vec{x}) = \begin{pmatrix} v_{n,\uparrow}(\vec{x}) \\ v_{n,\downarrow}(\vec{x}) \end{pmatrix}$$

$$\hat{h}(\vec{x}) = \begin{pmatrix} -\vec{\nabla} \cdot (\frac{\hbar^2}{2m_{\uparrow}(\vec{x})}\vec{\nabla}) + U_{\uparrow}(\vec{x}) - \mu_{\uparrow} & 0 \\ 0 & -\vec{\nabla} \cdot (\frac{\hbar^2}{2m_{\downarrow}(\vec{x})}\vec{\nabla}) + U_{\downarrow}(\vec{x}) - \mu_{\downarrow} \end{pmatrix} - i\hbar(\vec{\sigma} \times \vec{W}(\vec{x})) \cdot \vec{\nabla}$$

$$E_{gs} = \int \{\epsilon_{normal}[\rho_n(\vec{x}), \rho_p(\vec{x})] + \epsilon_{superfluid}[\rho_n(\vec{x}), \rho_p(\vec{x}), \nu_n(\vec{x}), \nu_p(\vec{x})]\} d^3x$$

$$\epsilon_{superfluid}[\rho_n, \rho_p, \nu_n, \nu_p] = g(\rho_p, \rho_n)[|\nu_p|^2 + |\nu_n|^2] + f(\rho_p, \rho_n)[|\nu_p|^2 - |\nu_n|^2] \frac{\rho_p - \rho_n}{\rho_p + \rho_n}$$

 $\epsilon_{normal}[
ho_n(ec{x}),
ho_p(ec{x})] = \epsilon_{normal}[
ho_p(ec{x}),
ho_n(ec{x})] \quad g(
ho_p,
ho_n) = g(
ho_n,
ho_p), f(
ho_p,
ho_n) = f(
ho_n,
ho_p)$

Superfluid Local Density Approximation Applied to Nuclei : a time dependent extension of density functional theory (Invited Session: A. Bulgac , K. Roche) [special thanks to Y.Yu]

$$i\hbar\partial_t \begin{pmatrix} u_n(\vec{x},t) \\ v_n(\vec{x},t) \end{pmatrix} = \begin{pmatrix} \hat{h}(\vec{x},t) + \hat{V}_{ext}(\vec{x},t) & \hat{\Delta}(\vec{x},t) + \hat{\Delta}_{ext}(\vec{x},t) \\ \hat{\Delta}^{\dagger}(\vec{x},t) + \hat{\Delta}^{\dagger}_{ext}(\vec{x},t) & -\hat{h}(\vec{x},t) - \hat{V}_{ext}(\vec{x},t) \end{pmatrix} \begin{pmatrix} u_n(\vec{x},t) \\ v_n(\vec{x},t) \end{pmatrix}$$

$$\psi_n(\vec{x}, t) \sim O(4 \times N^3) \qquad N \in [50, 100]$$

~ Number of quasiparticle functions

 $[10^3, 10^5]$ ~ Number of time steps per nucleus

Computation of Observables

$$Q(\omega) = \sum_{\sigma} \int Q(\vec{x}, \sigma, t) \rho(\vec{x}, \sigma, t) e^{i\omega t} d^3x dt$$

nn, nnn interactions: ab initio theory of light AV-18, Vlow-k, EFT nuclei(A<=16)

terra incognita

ab initio

configuration interaction

density functional theory

coupled cluster, no core shell model, Green's function Monte Carlo

Frontier Nuclear Science Enabled by SciDAC

Exotic nuclei with atomic number 14, not previously discovered but important for stellar processes, are predicted to exist for short life-times through advanced simulations using MFDn, a parallel code for configuration interaction modeling in a harmonic oscillator basis (see fig. on left).

Collaboration among Physics, Applied Mathematics, and Computer Science enabled the simulations through critical improvements in MFDn by a factor of 4-6 on the Cray XT4, equivalent of 3-5 years of progress in computing hardware.

Improvements in MFDn include new data structures, new parallel blocking and combinatorial algorithms, and enhanced inner loop and I/O performance.

Computing the 10 lowest eigenstates using the improved MFDn for ¹⁴F requires 3 hours on 30,628 Cray XT-4 nodes at ORNL. This would have taken at least 18 hours using previous versions of MFDn.

dynamic extensions of density functional theory LACM, QRPA, TDDFT level densities

known nuclei

neutrons

²⁵⁸ Fm (SkM*)

²⁵⁸ Fm (SkM*)

- •all nuclei (even, odd, spherical, deformed)
- any quantum numbers of (Q)RPA modes
- •fully self-consistent and no imposed symmetries
- probe excited state properties of nuclei
- •new space-time lattice code, designed with lattice dft solver*connection

stable nuclei

- •plave wave basis, discrete Fourier transforms (FFTW) for gradients, derivatives
- •multi-step (predictor-modifier-corrector) time algorithm, O(h^5)
- •numerically conserved constants of the motion
- Fortran and C versions fully consistent
- •same codes run on laptop (no MPI) or parallel (w/MPI) computers
- •out-of-core version exists in C language

low energy reaction theory Hauser - Feshbach, Feshbach-Kerman-Koonin fusion / fission processes masses, energy distributions

> , G. Fann et al \$, P. Magierski et al %,W. Nazarewicz et al *, J.Vary, E. Ng et al

Outstanding Computational Scaling Properties: Cray XT4

The second of th									
STRONG SCALING EXAMPLE $N^3 = 30^3$						WEAK SCALING EXAMPLE			
	PEs (jaguarcnl)	576	1152	1728 230	04				
	<nwf pe=""></nwf>	48	24	16 12					
L	[s]/ts	56.2	28.8	19.3	92 (14.05)	N^3	30^3	40^3	50^3
$N^3 = 40^3$					quasiparticles	28288	66796	130528	
PEs	(jaguar)	942 (x4)	1884(x4)	2826(x4)	3768(x4)	PEs	168(x4)	942(x4)	3626(x4)
<nwf pe=""></nwf>	70	36	24	17	[s] / 10 time steps	297.31	296.15	319.03	
(11 W 171 L)					Total INS	1.41538E+14	7.87635E+14	3.13385E+15	
[s] / 10	time steps	296.15	153.31	103.17	77.02 (74.03)	Total FLOP	3.3787E+13	1.84227E+14	8.22772E+14
To	tal INS	7.87635E+14	8.15353E+14	8.15732E+14	8.10577E+14	Total BYTES	5.37701E+11	3.00957E+12	1.14865E+13
	INS(PE))	8.38278E+11	4.25906E+11	2.83689E+11	2.13813E+11	$t(50^3)/t(40^3) = 1.077$	PE/PE=3.849	INS/INS=3.97	FLOP/FLOP=4.46
Tota	al FLOP	1.84227E+14	1.84997E+14	1.85766E+14	1.86536E+14	t(50^3)/t(30^3) = 1.073	PE/PE=21.583	INS/INS=22.14	FLOP/FLOP=24.35
max(II	NS(FLOP))	1.9578E+11	99655061696	66696994580	50218692684	$t(40^3)/t(30^3) = .996$	PE/PE=5.607	INS/INS=5.564	FLOP/FLOP=5.45

Out-of-Core (OOC) Variant to Manage Memory Demand

N^3	Quasiparticles	BYTEs	BYTEs (OOC)
30^3	28288	5.37701E+11	44280000
40^3	66796	3.00957E+12	104960000
50^3	130528	1.14865E+13	205000000
60^3	226156	3.43902E+13	354240000
70^3	359056	8.6702E+13	562520000
80^3	535516	1.93026E+14	839680000
90^3	763824	3.92007E+14	1195560000
100^3	1046604	7.36809E+14	1640000000
110^3	1393008	1.30528E+15	2182840000
120^3	1808172	2.19966E+15	2833920000
130^3	2299056	3.55592E+15	3603080000

To see a full list of the researchers and learn more about this SciDAC collaboration

UNEDF Contact Information and Leadership: (PI) George Bertsch , bertsch@phys.washington.edu project, including the many other exciting research problems we are studying from (Physics Director) Witek Nazarewicz, witek@utk.edu physics, math, and computing, please visit our website: http://www.unedf.org. (Computer Science and Mathematics Director) Rusty Lusk, <u>lusk@mcs.anl.gov</u>

density functional theory (A>16)

global properties

Special thanks to our sponsors: United States Department of Energy - National Nuclear Security Administration United States Department of Energy - Office of Science - Advanced Scientific Computing Research United States Department of Energy - Office of Science - Nuclear Physics

60x60x60 ~ current in-core problem size limit on Cray XT4 at ORNL